Statistics of Internet Discussions with Illustrations on Emoticon Use

Juha Alho\(^1\)

University of Helsinki
Department of Social Research

Oct, 1, 2019

\(^1\)This research was supported by the Academy of Finland grant 292906, project Citizen Mindscapes.
Discussion Forum suomi24: Characteristics

Owner: Aller Publishers → research use!

Data from 2001-2015 (now 2001-2017), longest in the world?

Number of posts 48×10^6 (now 84×10^6)

Posts form threads. They differ in type:

<table>
<thead>
<tr>
<th></th>
<th>Endemic</th>
<th>Epidemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endogenous</td>
<td>"bible"</td>
<td>"dispute about cars, authority"</td>
</tr>
<tr>
<td>Exogenous</td>
<td>"ski resort"</td>
<td>immigration, cyber attacks,...</td>
</tr>
</tbody>
</table>
Emoticons Considered (16/23)

emot/ion + icon (≈ emoji pictographs, but in ASCII)

<3 :) :)) :))) ;) ;)) :-) ;-)

=) :(:-(:D :DD ;D :-D XD

= =E =f =O : o :P =P

Bottom 7 excluded: many were parts of internet addresses

Source:

Parser → lemmas → punctuation → list of potential emoticons
Total Counts (Dotted) and Share of Messages with at Least One Emoticon (Blue): Missing Data?
Weekly Shares of Posts by Hour of the Day
Generated by voluntary participation

Moderation by Owner of Data

Cyber Attacks

Data Processing Errors

No target population \rightarrow no missing data!

Counts do not reflect the burstyness of the social world only \rightarrow Observed changes of level are biased evidence of underlying moods/rhythms etc.

Total counts in posts are not related with emoticon use \rightarrow No bias in relative shares, even when participation, moderation or processing errors vary.
Marginal Occurrence of Emoticons ($N \sim 48 \times 10^6$)

Messages with at least one emoticon are 8.2%

Of these messages, the percentages containing specific emoticons are

<table>
<thead>
<tr>
<th></th>
<th>:)</th>
<th>;)</th>
<th>:D</th>
<th>:=)</th>
<th>:-(</th>
<th>:-)</th>
<th>:)</th>
<th>;-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>48.2</td>
<td>16.1</td>
<td>15.8</td>
<td>7.8</td>
<td>6.2</td>
<td>3.7</td>
<td>2.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>;D</th>
<th>;)</th>
<th>XD</th>
<th>:)))</th>
<th>:-D</th>
<th>:-)</th>
<th>:DD</th>
<th><3</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>1.8</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Snoeleben's (2012) top ten in U.S. twitter data:

<table>
<thead>
<tr>
<th></th>
<th>:)</th>
<th>;)</th>
<th>:(</th>
<th>:D</th>
<th>:-)</th>
<th>XD</th>
<th>:=)</th>
<th>;-)</th>
<th>;D</th>
<th>:)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>
Association Between Discussion Areas and Emoticons

460 discussion areas, select 410 with more than 500 messages → 410 × 16 matrix of counts \(Y_{ij}\)

Correspondence Analysis:

\[
Y_{+j} = \sum_{i=1}^{410} Y_{ij}, \quad Y_{i+} = \sum_{j=1}^{16} Y_{ij}, \quad Y_{++} = \sum_{i=1}^{410} \sum_{j=1}^{16} Y_{ij}
\]

\[
p_{ij} = Y_{ij} / Y_{++}, \quad r_i = Y_{i+} / Y_{++}, \quad c_j = Y_{+j} / Y_{++}
\]

\[
P = (p_{ij}), \quad r = (r_1, \ldots, r_{410})^T, \quad c = (c_1, \ldots, c_{16})^T
\]

Least Squares approximation via SVD:

\[
D(r)^{-1/2}(P - rc^T)D(c)^{-1/2} \approx UD(\alpha)V^T,
\]

where \(U^TU = V^TV = I_2\)
Motivation for least squares: e.g., under a Poisson model,

\[\frac{(Y_{ij} - E[Y_{ij}])/E[Y_{ij}]^{1/2}}{\text{asymptotically}} = N(0, 1) \]

But, for display, \textbf{relative deviations from the expected} can be more interpretable

\[D(r)^{-1/2}(P - rc^T)D(c)^{-1/2} \approx D(r)^{-1/2}UD(\alpha)V^TD(c)^{-1/2} \]

\textbf{Principal Coordinates:} \(D(r)^{-1/2}UD(\alpha) \)

\textbf{Standard Coordinates:} \(D(c)^{-1/2}V \)
Associations Between Emoticons from Correspondence Analysis (Standard Coordinates)
Shares of Main Types of Emoticons

Week

Relative Level

:) ;) =) :(

:-) ;-) :-(:-D

:D :DD ;D XD

:)) :))) ;))
Main Types of Emoticons by Hour of the Day

- :)) :))) ;))
- :D :DD ;D XD
- :) ;) =) :(
- :-) ;-) :-(:-D

Graph showing the share of different emoticons across different hours of the day.
Topics ↔ Style ↔ Individuals

Top 5 Sports ordered by relative emoticon shares

<table>
<thead>
<tr>
<th></th>
<th>Golf</th>
<th>Extreme Skiing (CC+DH)</th>
<th>Ice swimming</th>
<th>Rollerskating</th>
<th>Skateboard Riding</th>
<th>Skating</th>
<th>Gymnastics</th>
<th>Icehockey</th>
<th>Weightlifting</th>
<th>Wrestling</th>
<th>Diving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Emoticons Modify Meaning and Characterize User

Scott E. Fahlman’s proposal (Sept. 1982):

:) for joke, :(for not joke

suggests that emoticons are metatext. This is too narrow since

(1) by correspondence analysis, ostensibly similar emoticons (e.g. :) , :-) , or :D, :-D) can fall into different groups,

(2) emoticon use varies by time and by topic,

(3) excessive punctuation (!!!, !!!?, !!!!?? etc.): 8.7 % overall, but 11.8 % in messages with emoticons, and

(4) there are heavy-users of emoticons,

so emoticons are better characterized as enrichments whose meanings become determined in their context of use - suitable for the ASCIIII world.
Appendix: Data Use Toolbox Available for Research and Teaching Involving suomi24

- **Laptop** (R and other programs)
- **TAITO cluster computer** (UNIX, R, MySQL)
- **cPOUTA IaaS** (suomi24 as MariaDB, MySQL)

Assumption: Intended Users have little past experience in R, UNIX, MySQL

Principle of Use: Copy/Paste from a set of prototype examples

Student Experience: Logic Works, but Silly Technical Problems Arise: Character Sets, Where am I?