Publications

2024

  1. Puistola, P, Kethiri, A, Nurminen, A, Turkki, J, Hopia, K, Miettinen, S et al.. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS Appl Mater Interfaces. 2024;16 (13):15761-15772. doi: 10.1021/acsami.3c17803. PubMed PMID:38513048 PubMed Central PMC10995904.
  2. Grönroos, P, Mörö, A, Puistola, P, Hopia, K, Huuskonen, M, Viheriälä, T et al.. Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res Ther. 2024;15 (1):81. doi: 10.1186/s13287-024-03672-w. PubMed PMID:38486306 PubMed Central PMC10941625.
  3. van Velthoven, AJH, Utheim, TP, Notara, M, Bremond-Gignac, D, Figueiredo, FC, Skottman, H et al.. Corrigendum to “Future directions in managing aniridia-associated keratopathy” [Surv Ophthalmol 68 (2023) 940-956]. Surv Ophthalmol. 2024;69 (2):300-301. doi: 10.1016/j.survophthal.2024.01.001. PubMed PMID:38326136 .
  4. Puistola, P, Miettinen, S, Skottman, H, Mörö, A. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio. 2024;24 :100924. doi: 10.1016/j.mtbio.2023.100924. PubMed PMID:38226015 PubMed Central PMC10788621.

Search PubMed

2023

 

  1. Ilmarinen, T, Vattulainen, M, Kandhavelu, J, Bremond-Gignac, D, Aberdam, D, Skottman, H et al.. Production and Limbal Lineage Commitment of Aniridia Patient-Derived Induced Pluripotent Stem Cells. Stem Cells. 2023;41 (12):1133-1141. doi: 10.1093/stmcls/sxad067. PubMed PMID:37632794 .
  2. Kauppila, M, Mörö, A, Valle-Delgado, JJ, Ihalainen, T, Sukki, L, Puistola, P et al.. Toward Corneal Limbus In Vitro Model: Regulation of hPSC-LSC Phenotype by Matrix Stiffness and Topography During Cell Differentiation Process. Adv Healthc Mater. 2023;12 (29):e2301396. doi: 10.1002/adhm.202301396. PubMed PMID:37449943 .
  3. Lappi, H, Kauppila, M, Aalto-Setälä, K, Mörö, A. The 3D bioprinted human induced pluripotent stem cell-derived cardiac model: Toward functional and patient-derived in vitro models for disease modeling and drug screening. Bioprinting. 2023;36:e00313. doi: 10.1016/j.bprint.2023.e00313.
  4. van Velthoven, AJH, Utheim, TP, Notara, M, Bremond-Gignac, D, Figueiredo, FC, Skottman, H et al.. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol. 2023;68 (5):940-956. doi: 10.1016/j.survophthal.2023.04.003. PubMed PMID:37146692.
  5. Karema-Jokinen, V, Koskela, A, Hytti, M, Hongisto, H, Viheriälä, T, Liukkonen, M et al.. Crosstalk of protein clearance, inflammasome, and Ca channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem. 2023;299 (6):104770. doi: 10.1016/j.jbc.2023.104770. PubMed PMID:37137441 PubMed Central PMC10240424.
  6. Hellinen, L, Hongisto, H, Ramsay, E, Kaarniranta, K, Vellonen, KS, Skottman, H et al.. Comparison of barrier properties of outer blood-retinal barrier models – Human stem cell-based models as a novel tool for ocular drug discovery. Eur J Pharm Biopharm. 2023;184 :181-188. doi: 10.1016/j.ejpb.2023.01.026. PubMed PMID:36740104 .

Search PubMed

2022

 

  1. Mörö, A, Samanta, S, Honkamäki, L, Rangasami, VK, Puistola, P, Kauppila, M et al.. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication. 2022;15 (1):. doi: 10.1088/1758-5090/acab34. PubMed PMID:36579828 .
  2. Lotila, J, Hyvärinen, T, Skottman, H, Airas, L, Narkilahti, S, Hagman, S et al.. Establishment of a human induced pluripotent stem cell line (TAUi008-A) derived from a multiple sclerosis patient. Stem Cell Res. 2022;63 :102865. doi: 10.1016/j.scr.2022.102865. PubMed PMID:35843021 .
  3. Korkka, I, Skottman, H, Nymark, S. Heterogeneity of Potassium Channels in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med. 2022;11 (7):753-766. doi: 10.1093/stcltm/szac029. PubMed PMID:35639962 PubMed Central PMC9299513.
  4. Hellinen, L, Hongisto, H, Ramsay, E, Kaarniranta, K, Vellonen, KS, Skottman, H et al.. Retraction: Hellinen et al. Drug Flux across RPE Cell Models: The Hunt for an Appropriate Outer Blood-Retinal Barrier Model for Use in Early Drug Discovery. 2020, , 176. Pharmaceutics. 2022;14 (3):. doi: 10.3390/pharmaceutics14030595. PubMed PMID:35297820 PubMed Central PMC8929403.
  5. Viheriälä, T, Hongisto, H, Sorvari, J, Skottman, H, Nymark, S, Ilmarinen, T et al.. Cell maturation influences the ability of hESC-RPE to tolerate cellular stress. Stem Cell Res Ther. 2022;13 (1):30. doi: 10.1186/s13287-022-02712-7. PubMed PMID:35073969 PubMed Central PMC8785579.
  6. Català, P, Thuret, G, Skottman, H, Mehta, JS, Parekh, M, Ní Dhubhghaill, S et al.. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res. 2022;87 :100987. doi: 10.1016/j.preteyeres.2021.100987. PubMed PMID:34237411 .

Search PubMed

2021

 

  1. Vattulainen, M, Ilmarinen, T, Viheriälä, T, Jokinen, V, Skottman, H. Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5 and ∆Np63α cells with limbal cell characteristics and high wound healing capacity. Stem Cell Res Ther. 2021;12 (1):609. doi: 10.1186/s13287-021-02673-3. PubMed PMID:34930437 PubMed Central PMC8691049.
  2. Liu, Z, Ilmarinen, T, Tan, GSW, Hongisto, H, Wong, EYM, Tsai, ASH et al.. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Res Ther. 2021;12 (1):423. doi: 10.1186/s13287-021-02395-6. PubMed PMID:34315534 PubMed Central PMC8314642.
  3. Català, P, Thuret, G, Skottman, H, Mehta, JS, Parekh, M, Ní Dhubhghaill, S et al.. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res. 2022;87 :100987. doi: 10.1016/j.preteyeres.2021.100987. PubMed PMID:34237411 .
  4. Hytti, M, Korhonen, E, Hongisto, H, Kaarniranta, K, Skottman, H, Kauppinen, A et al.. Differential Expression of Inflammasome-Related Genes in Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells with or without History of Age-Related Macular Degeneration. Int J Mol Sci. 2021;22 (13):. doi: 10.3390/ijms22136800. PubMed PMID:34202702 PubMed Central PMC8268331.
  5. Arzalluz-Luque, Á, Cabrera, JL, Skottman, H, Benguria, A, Bolinches-Amorós, A, Cuenca, N et al.. Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells. Front Neurosci. 2021;15 :636969. doi: 10.3389/fnins.2021.636969. PubMed PMID:33994920 PubMed Central PMC8116631.
  6. Anton-Sales, I, Koivusalo, L, Skottman, H, Laromaine, A, Roig, A. Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration. Small. 2021;17 (10):e2003937. doi: 10.1002/smll.202003937. PubMed PMID:33586332 .
  7. Grönroos, P, Ilmarinen, T, Skottman, H. Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells. 2021;10 (2):. doi: 10.3390/cells10020331. PubMed PMID:33562615 PubMed Central PMC7915025.
  8. Tan, GSW, Liu, Z, Ilmarinen, T, Barathi, VA, Chee, CK, Lingam, G et al.. Hints for Gentle Submacular Injection in Non-Human Primates Based on Intraoperative OCT Guidance. Transl Vis Sci Technol. 2021;10 (1):10. doi: 10.1167/tvst.10.1.10. PubMed PMID:33510949 PubMed Central PMC7804573.
  9. Viheriälä, T, Sorvari, J, Ihalainen, TO, Mörö, A, Grönroos, P, Schlie-Wolter, S et al.. Culture surface protein coatings affect the barrier properties and calcium signalling of hESC-RPE. Sci Rep. 2021;11 (1):933. doi: 10.1038/s41598-020-79638-8. PubMed PMID:33441679 PubMed Central PMC7806758.

Search PubMed

2020

  1. Hongisto, H, Dewing, JM, Christensen, DR, Scott, J, Cree, AJ, Nättinen, J et al.. In vitro stem cell modelling demonstrates a proof-of-concept for excess functional mutant TIMP3 as the cause of Sorsby fundus dystrophy. J Pathol. 2020;252 (2):138-150. doi: 10.1002/path.5506 . PubMed PMID: 32666594 .
  2. Calejo, MT, Saari, J, Vuorenpää, H, Vuorimaa-Laukkanen, E, Kallio, P, Aalto-Setälä, K et al.. Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater. 2020;101:327-343. doi: 10.1016/j.actbio.2019.11.002. PubMed PMID: 31711900 .
  3. Ramsay, E, Raviña, M, Sarkhel, S, Hehir, S, Cameron, NR, Ilmarinen, T et al.. Avoiding the Pitfalls of siRNA Delivery to the Retinal Pigment Epithelium with Physiologically Relevant Cell Models. Pharmaceutics. 2020;12 (7):667. doi: 10.3390/pharmaceutics12070667 . PubMed PMID: 32708811 PubMed Central PMC7407886 .

2019

  1. Calejo, MT, Saari, J, Vuorenpää, H, Vuorimaa-Laukkanen, E, Kallio, P, Aalto-Setälä, K et al.. Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomater. 2020;101 :327-343. doi: 10.1016/j.actbio.2019.11.002. PubMed PMID:31711900 .
  2. Koivusalo, L, Kauppila, M, Samanta, S, Parihar, VS, Ilmarinen, T, Miettinen, S et al.. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials. 2019;225 :119516. doi: 10.1016/j.biomaterials.2019.119516. PubMed PMID:31574405 .
  3. Vuori, N, Sandholm, N, Kumar, A, Hietala, K, Syreeni, A, Forsblom, C et al.CACNB2 Is a Novel Susceptibility Gene for Diabetic Retinopathy in Type 1 Diabetes. Diabetes. 2019;68 (11):2165-2174. doi: 10.2337/db19-0130. PubMed PMID:31439644 PubMed Central PMC6804633.
  4. Johansson, JK, Karema-Jokinen, VI, Hakanen, S, Jylhä, A, Uusitalo, H, Vihinen-Ranta, M et al.. Sodium channels enable fast electrical signaling and regulate phagocytosis in the retinal pigment epithelium. BMC Biol. 2019;17 (1):63. doi: 10.1186/s12915-019-0681-1. PubMed PMID:31412898 PubMed Central PMC6694495.
  5. Vattulainen, M, Ilmarinen, T, Koivusalo, L, Viiri, K, Hongisto, H, Skottman, H et al.. Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Res Ther. 2019;10 (1):236. doi: 10.1186/s13287-019-1354-2. PubMed PMID:31383008 PubMed Central PMC6683518.
  6. Kiamehr, M, Klettner, A, Richert, E, Koskela, A, Koistinen, A, Skottman, H et al.. Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. Int J Mol Sci. 2019;20 (15):. doi: 10.3390/ijms20153773. PubMed PMID:31375001 PubMed Central PMC6696227.
  7. Haagdorens, M, Cėpla, V, Melsbach, E, Koivusalo, L, Skottman, H, Griffith, M et al.. In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells Int. 2019;2019 :7867613. doi: 10.1155/2019/7867613. PubMed PMID:31065280 PubMed Central PMC6466865.
  8. Szatmári-Tóth, M, Ilmarinen, T, Mikhailova, A, Skottman, H, Kauppinen, A, Kaarniranta, K et al.. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium-Role in Dead Cell Clearance and Inflammation. Int J Mol Sci. 2019;20 (4):. doi: 10.3390/ijms20040926. PubMed PMID:30791639 PubMed Central PMC6412543.
  9. Ilmarinen, T, Thieltges, F, Hongisto, H, Juuti-Uusitalo, K, Koistinen, A, Kaarniranta, K et al.. Survival and functionality of xeno-free human embryonic stem cell-derived retinal pigment epithelial cells on polyester substrate after transplantation in rabbits. Acta Ophthalmol. 2019;97 (5):e688-e699. doi: 10.1111/aos.14004. PubMed PMID:30593729 .
  10. Korkka, I, Viheriälä, T, Juuti-Uusitalo, K, Uusitalo-Järvinen, H, Skottman, H, Hyttinen, J et al.. Functional Voltage-Gated Calcium Channels Are Present in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med. 2019;8 (2):179-193. doi: 10.1002/sctm.18-0026. PubMed PMID:30394009 PubMed Central PMC6344904.
  11. Felszeghy, S, Viiri, J, Paterno, JJ, Hyttinen, JMT, Koskela, A, Chen, M et al.. Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 2019;20 :1-12. doi: 10.1016/j.redox.2018.09.011. PubMed PMID:30253279 PubMed Central PMC6156745.

Search PubMed

2018

  1. Ilmarinen, T, Thieltges, F, Hongisto, H, Juuti-Uusitalo, K, Koistinen, A, Kaarniranta, K et al.. Survival and functionality of xeno-free human embryonic stem cell-derived retinal pigment epithelial cells on polyester substrate after transplantation in rabbits. Acta Ophthalmol. 2019;97 (5):e688-e699. doi: 10.1111/aos.14004. PubMed PMID:30593729 .
  2. Hongisto, H, Vattulainen, M, Ilmarinen, T, Mikhailova, A, Skottman, H. Efficient and Scalable Directed Differentiation of Clinically Compatible Corneal Limbal Epithelial Stem Cells from Human Pluripotent Stem Cells. J Vis Exp. 2018; (140):. doi: 10.3791/58279. PubMed PMID:30417867 PubMed Central PMC6235585.
  3. Korkka, I, Viheriälä, T, Juuti-Uusitalo, K, Uusitalo-Järvinen, H, Skottman, H, Hyttinen, J et al.. Functional Voltage-Gated Calcium Channels Are Present in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med. 2019;8 (2):179-193. doi: 10.1002/sctm.18-0026. PubMed PMID:30394009 PubMed Central PMC6344904.
  4. Kaur, S, Abu-Shahba, AG, Paananen, RO, Hongisto, H, Hiidenmaa, H, Skottman, H et al.. Small non-coding RNA landscape of extracellular vesicles from human stem cells. Sci Rep. 2018;8 (1):15503. doi: 10.1038/s41598-018-33899-6. PubMed PMID:30341351 PubMed Central PMC6195565.
  5. Felszeghy, S, Viiri, J, Paterno, JJ, Hyttinen, JMT, Koskela, A, Chen, M et al.. Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 2019;20 :1-12. doi: 10.1016/j.redox.2018.09.011. PubMed PMID:30253279 PubMed Central PMC6156745.
  6. Abu Khamidakh, AE, Rodriguez-Martinez, A, Kaarniranta, K, Kallioniemi, A, Skottman, H, Hyttinen, J et al.. Wound healing of human embryonic stem cell-derived retinal pigment epithelial cells is affected by maturation stage. Biomed Eng Online. 2018;17 (1):102. doi: 10.1186/s12938-018-0535-z. PubMed PMID:30064430 PubMed Central PMC6069779.
  7. Piippo, N, Korhonen, E, Hytti, M, Skottman, H, Kinnunen, K, Josifovska, N et al.. Hsp90 inhibition as a means to inhibit activation of the NLRP3 inflammasome. Sci Rep. 2018;8 (1):6720. doi: 10.1038/s41598-018-25123-2. PubMed PMID:29712950 PubMed Central PMC5928092.
  8. Sorkio, A, Koch, L, Koivusalo, L, Deiwick, A, Miettinen, S, Chichkov, B et al.. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171 :57-71. doi: 10.1016/j.biomaterials.2018.04.034. PubMed PMID:29684677 .
  9. Koivusalo, L, Karvinen, J, Sorsa, E, Jönkkäri, I, Väliaho, J, Kallio, P et al.. Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Mater Sci Eng C Mater Biol Appl. 2018;85 :68-78. doi: 10.1016/j.msec.2017.12.013. PubMed PMID:29407158 .
  10. Calejo, MT, Ilmarinen, T, Skottman, H, Kellomäki, M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66 :44-66. doi: 10.1016/j.actbio.2017.11.043. PubMed PMID:29183847 .

Search PubMed